Random Kneser Graphs and Hypergraphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Kneser graphs and hypergraphs

A Kneser graph KGn,k is a graph whose vertices are all k-element subsets of [n], with two vertices connected if and only if the corresponding sets do not intersect. A famous result due to Lovász states that the chromatic number of a Kneser graph KGn,k is equal to n − 2k + 2. In this paper we discuss the chromatic number of random Kneser graphs and hypergraphs. It was studied in two recent paper...

متن کامل

Packing random graphs and hypergraphs

We determine to within a constant factor the threshold for the property that two random k-uniform hypergraphs with edge probability p have an edge-disjoint packing into the same vertex set. More generally, we allow the hypergraphs to have different densities. In the graph case, we prove a stronger result, on packing a random graph with a fixed graph.

متن کامل

Kneser Colorings of Uniform Hypergraphs

For xed positive integers r, k and ` with ` < r, and an r-uniform hypergraph H, let κ(H, k, `) denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least ` vertices. Consider the function KC(n, r, k, `) = maxH∈Hn κ(H, k, `), where the maximum runs over the family Hn of all r-uniform hypergraphs on n vertices. In this...

متن کامل

Colorful Subhypergraphs in Kneser Hypergraphs

Using a Zq-generalization of a theorem of Ky Fan, we extend to Kneser hypergraphs a theorem of Simonyi and Tardos that ensures the existence of multicolored complete bipartite graphs in any proper coloring of a Kneser graph. It allows to derive a lower bound for the local chromatic number of Kneser hypergraphs (using a natural definition of what can be the local chromatic number of a uniform hy...

متن کامل

Hypergraphs with many Kneser colorings

For fixed positive integers r, k and ` with 1 ≤ ` < r and an r-uniform hypergraph H, let κ(H, k, `) denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least ` elements. Consider the function KC(n, r, k, `) = maxH∈Hn κ(H, k, `), where the maximum runs over the family Hn of all r-uniform hypergraphs on n vertices. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2018

ISSN: 1077-8926

DOI: 10.37236/8005